ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

泥岩地基中黏土矿物含量对高速铁路无砟轨道膨胀潜势的影响

丁小刚, 马丽娜, 张戎令, 李佳敏, 张唐瑜, 王斌文

丁小刚, 马丽娜, 张戎令, 李佳敏, 张唐瑜, 王斌文. 泥岩地基中黏土矿物含量对高速铁路无砟轨道膨胀潜势的影响[J]. 中国地质灾害与防治学报, 2021, 32(1): 108-116. DOI: 10.16031/j.cnki.issn.1003-8035.2021.01.15
引用本文: 丁小刚, 马丽娜, 张戎令, 李佳敏, 张唐瑜, 王斌文. 泥岩地基中黏土矿物含量对高速铁路无砟轨道膨胀潜势的影响[J]. 中国地质灾害与防治学报, 2021, 32(1): 108-116. DOI: 10.16031/j.cnki.issn.1003-8035.2021.01.15
Xiaogang DING, Lina MA, Rongling ZHANG, Jiamin LI, Tangyu ZHANG, Binwen WANG. Expansive potential of ballastless track on high speed railway mudstone foundation with low clay mineral content[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 108-116. DOI: 10.16031/j.cnki.issn.1003-8035.2021.01.15
Citation: Xiaogang DING, Lina MA, Rongling ZHANG, Jiamin LI, Tangyu ZHANG, Binwen WANG. Expansive potential of ballastless track on high speed railway mudstone foundation with low clay mineral content[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 108-116. DOI: 10.16031/j.cnki.issn.1003-8035.2021.01.15

泥岩地基中黏土矿物含量对高速铁路无砟轨道膨胀潜势的影响

基金项目: 青年人才托举工程(2015QNRC001);博士后面上资助(2016M602892);长江学者和创新团队发展计划滚动支持(IRT_15R29);兰州交通大学(201606)优秀平台资助
详细信息
    作者简介:

    丁小刚(1999-),男,回族,甘肃平凉人,硕士研究生,主要从事膨胀性泥岩及隧道工程方面的研究。E-mail: 2286515113@qq.com

    通讯作者:

    马丽娜(1985-),女,陕西渭南人,博士,副教授,硕士生导师,主要从事膨胀性泥岩及隧道工程的教学与科研工作。E-mail:malinalanzhou@163.com

  • 中图分类号: TU443

Expansive potential of ballastless track on high speed railway mudstone foundation with low clay mineral content

  • 摘要: 为研究低黏土矿物含量泥岩地基中不同黏土矿物含量对高速铁路无砟轨道路基膨胀潜势、膨胀上拱变形量的影响,对既有规范针对无砟轨道膨胀土判定分级方面进行补充和完善,选取25处典型路基上拱病害段泥岩样进行X射线衍射实验,优化级配的自由膨胀率实验及阳离子交换量实验,采用主成分分析法(PCA)提取累计方差解释量90.098%进行降维分析,并结合实际工程进行等级区间划分。结果表明:PCA可排除各因子间的共线性对模型结果的影响,在统计意义的基础上采用三因子能够正确表征膨胀土膨胀潜势与微观因子间良好的线性关系;通过简化、优化物理指标得到的膨胀土膨胀特性判定指标F,与实际轨道上拱量的Person相关性提高至0.902;依据线路实际膨胀情况和F划分的膨胀等级区间较既有规范判定准确度明显提高。研究结果可为该高速铁路沿线膨胀土判别和灾害防治提供参考和理论支撑。
    Abstract: In order to study the influence of different clay mineral contents in low clay mineral content mudstone foundation on the swelling potential and swelling upper arch deformation of ballastless track subgrade of high-speed railway, supplement and improve the existing standards for the determination and classification of ballastless expansive soil. Mudstone samples were selected from 25 typical roadbed arch diseased sections to conduct X-ray diffraction experiments. The free expansion rate experiment and cation exchange capacity experiment were optimized. The principal component analysis (PCA) method was used to extract the cumulative variance interpretation amount of 90.098% for dimension reduction analysis. And combined with the actual project to classify the interval. The results show that: PCA can exclude the influence of co-linearity between factors on the model results. Based on statistical significance, three factors can be used to characterize the good linear relationship between the swelling potential of expansive soil and micro-factors; by simplifying and optimizing physical indicators, the obtained index F for expansive soil has a Person correlation with the amount of arch on the actual track increased to 0.902; according to the actual expansion conditions of the line and the expansion grade interval divided by F, the accuracy of the judgment of the existing standards is significantly improved. The research results can provide reference and theoretical support for the identification of the expansive soil and disaster prevention along the high-speed railway.
  • 图  1   隆起病害(左)及膨胀泥岩图(右)

    Figure  1.   Uplift(left) and expanded mudstone in the foundation (right)

    图  2   泥岩X射线衍射图

    Figure  2.   X-ray diffraction pattern of mudstone

    图  3   自由膨胀率实验(左)及阳离子交换量实验图(右)

    Figure  3.   Free expansion rate experiment (left) and cation exchange amount experiment (right)

    图  4   实验数据记录及规范[16]判定结果图

    注:编号中“NY”表示“泥岩”,下同;图中“无”,“弱”,“中”,“强”分别表示泥岩膨胀性等级的“无膨胀性”,“弱膨胀性”,“中膨胀性”和“强膨胀性”,下同。

    Figure  4.   Judgement result by experimental data record and specification[16]

    图  5   二维荷载图

    Figure  5.   Two-dimensional load diagram

    图  6   F值计算汇总图

    Figure  6.   Summary of calculated F values

    图  7   膨胀等级对比图

    Figure  7.   Comparison of expansion levels

    图  8   路基上拱量对比图

    Figure  8.   Comparison of arch amount on roadbed

    表  1   泥岩矿物成份表

    Table  1   Mudstone mineral composition

    样品编号蒙脱石伊利石高岭石石膏绿泥石石英钾长石斜长石方解石白云石菱铁矿赤铁矿黄铁矿
    NY12.03.100034.110.221.228.10001.3
    NY21.53.300.3056.66.212.619.50000
    NY30.61.400026.47.57.855.70000.6
    NY41.22.52.50046.615.817.114.30000
    NY52.83.72.30036.712.018.023.50001.0
    NY604.800048.312.728.75.50000
    NY70.52.500.3035.910.216.933.70000
    NY803.02.60032.426.713.421.90000
    NY92.13.62.80034.39.422.524.31000
    NY101.72.5003.728.413.125.824.80000
    NY111.53.700027.618.424.721.80.60.701.0
    NY121.22.400061.212.311.911.00000
    NY131.93.000047.309.038.10.7000
    NY1402.800.3053.214.214.714.80000
    NY1505.300055.322.3017.10000
    NY161.63.32.20042.915.523.69.10.90.900
    NY171.53.900.44.247.310.215.514.90.601.50
    NY181.63.73.50230.814.734.18.80.30.500
    NY1904.51.40.3050.024.011.28.10.5000
    NY202.03.600.3050.57.420.614.20001.4
    NY211.47.600.5055.810.414.09.00001.3
    NY221.63.62.40054.47.118.212.20.5000
    NY233.76.500050.113.324.42.00000
    NY241.13.300041.420.717.715.80000
    NY2508.2002.749.57.916.214.20.60.700
    下载: 导出CSV

    表  2   平均值和标准差计算表

    Table  2   Average and standard deviation calculation table

    等效蒙脱石含量/%自由膨胀率/%阳离子交换量/(mol·kg−1
    平均值1.6636.54201.69
    标准差0.9521.2962.45
    下载: 导出CSV

    表  3   KMO和巴特利特检验

    Table  3   KMO and Bartlett test

    KMO 取样适切性量数0.684
    巴特利特球形度检验近似卡方23.869
    自由度3
    显著性0.000
    下载: 导出CSV

    表  4   解释的总方差

    Table  4   The explained total variance

    成份初始特征值旋转平方和载入
    特征值方差贡献率/%累计贡献率/%特征值方差贡献率/%累计贡献率/%
    12.17672.52972.5291.62654.19754.197
    20.52717.56990.0981.07735.90190.098
    30.2979.902100.000
    下载: 导出CSV

    表  5   成分得分系数矩阵

    Table  5   Component score coefficient matrix

    指标成份
    12
    等效蒙脱石$ {M}^{{{'}}} $−0.3681.151
    自由膨胀率$ {F}_{S} $0.565−0.091
    阳离子交换量${{CEC} }$0.696−0.291
    下载: 导出CSV

    表  6   主成分权重表

    Table  6   Weight of the principal component

    主成份$ {F}_{1} $$ {F}_{2} $
    权重0.541970.35901
    下载: 导出CSV

    表  7   膨胀等级汇总表

    Table  7   Summary of expansion levels

    级别F值范围
    无膨胀$ F<-1.0 $
    弱膨胀$-1.0\leqslant F < 0.0$
    中膨胀$0.0\leqslant F < 1.1$
    强膨胀$1.1\leqslant F$
    下载: 导出CSV

    表  8   无膨胀性泥岩试验结果

    Table  8   Test results of Non-expansive mudstone

    编号${{M} }'$(%)${{F} }_{{S} }$(%)${{CEC} }\left( { {{NH} })_{{4} }^ + } \right)$
    (mol·L)
    ${{F} }$本文膨胀
    潜势判定
    实际
    膨胀性
    10.057.533.60−1.63
    20.1911.540.49−1.50
    30.1612.542.34−1.49
    40.3414.049.06−1.39
    50.2913.246.70−1.43
    60.3014.549.73−1.39
    70.3010.084.70−1.28
    80.2921.084.71−1.13
    90.4418.083.62−1.14
    100.3712.598.83−1.16
    下载: 导出CSV
  • [1] 董文萍. 基于黏粒含量变化的膨胀土抗剪强度及其掺灰改良研究[D]. 郑州: 华北水利水电大学, 2015.

    DONG Wenping. Study on shear strength of expansive soil based on variation of clay content and improvement of ash addition[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2015. (in Chinese)

    [2] 孙海宁. 荆门膨胀土结构特征及承载性能研究[D]. 武汉: 中国地质大学(武汉), 2011.

    SUN Haining. Study on structural characteristics and bearing capacity of Jingmen expansive soil[D]. Wuhan: China University of Geosciences, 2011. (in Chinese)

    [3]

    AL-HOMOUD A S, BASMA A A, HUSEIN MALKAWI A I, et al. Cyclic swelling behavior of clays[J]. Journal of Geotechnical Engineering,1995,121(7):562 − 565. DOI: 10.1061/(ASCE)0733-9410(1995)121:7(562)

    [4]

    DIF A, BLUEMEL W F. Expansive soils under cyclic drying and wetting[J]. Geotechnical Testing Journal,1991,14(1):96 − 102. DOI: 10.1520/GTJ10196J

    [5]

    DAY R W. Swell-shrink behavior of compacted clay[J]. Journal of Geotechnical Engineering,1994,120(3):618 − 623. DOI: 10.1061/(ASCE)0733-9410(1994)120:3(618)

    [6]

    ALLAM M M, SRIDHARAN S. Effect of wetting and drying on shear strength[J]. Geotechnical Engineering, ASCE,1981,107(4):421 − 438.

    [7] 陈善雄, 余颂, 孔令伟, 等. 膨胀土判别与分类方法探讨[J]. 岩土力学,2005,26(12):1895 − 1900. [CHEN Shanxiong, YU Song, KONG Lingwei, et al. Study on approach to identification and classification of expansive soils[J]. Rock and Soil Mechanics,2005,26(12):1895 − 1900. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2005.12.006
    [8] 王剑. 兰新高速铁路路基上拱原因分析及整治措施[J]. 路基工程,2015(1):205 − 209. [WANG Jian. Cause analysis on subgrade arching of Lanzhou-Xinjiang high-speed railway and the control measures[J]. Subgrade Engineering,2015(1):205 − 209. (in Chinese with English abstract)
    [9] 马丽娜, 严松宏, 张戎令, 等. 低黏土矿物含量泥岩浸水膨胀变形的试验研究[J]. 工业建筑,2015,45(11):111 − 115. [MA Lina, YAN Songhong, ZHANG Rongling, et al. Experimental research on soaking swelling deformation of mudstone with low content of clay minerals[J]. Industrial Construction,2015,45(11):111 − 115. (in Chinese with English abstract)
    [10] 马丽娜, 严松宏, 王起才, 等. 哈密地区膨胀性泥岩膨胀特性研究[J]. 兰州交通大学学报,2015,34(1):17 − 22. [MA Lina, YAN Songhong, WANG Qicai, et al. Research on the characteristics of expansive mudstone in kumul prefecture[J]. Journal of Lanzhou Jiaotong University,2015,34(1):17 − 22. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4373.2015.01.004
    [11] 薛彦瑾, 王起才, 张戎令, 等. 高速铁路地基膨胀土膨胀变形试验研究[J]. 铁道科学与工程学报,2017,14(4):690 − 696. [XUE Yanjin, WANG Qicai, ZHANG Rongling, et al. Experimental study on expansive deformation of expansive soil in high speed railway[J]. Journal of Railway Science and Engineering,2017,14(4):690 − 696. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-7029.2017.04.004
    [12] 王冲. 高速铁路无砟轨道地基膨胀土判别与分级研究[D]. 兰州: 兰州交通大学, 2018.

    WANG Chong. Study on discriminant and classification of expansive soil in ballastless track of high-speed railway[D]. Lanzhou: Lanzhou Jiatong University, 2018. (in Chinese)

    [13] 王冲, 王起才, 张戎令, 等. 低黏土矿物含量泥岩的自由膨胀率试验研究[J]. 水利水电技术,2018,49(5):123 − 128. [WANG Chong, WANG Qicai, ZHANG Rongling, et al. Experimental study on free expansion rate of mudstone with low clay mineral content[J]. Water Resources and Hydropower Engineering,2018,49(5):123 − 128. (in Chinese with English abstract)
    [14] 崔晓宁, 王起才, 张戎令, 等. 基于无砟轨道膨胀路基的膨胀土分类分级试验研究[J]. 科学技术与工程,2017,17(12):248 − 251. [CUI Xiaoning, WANG Qicai, ZHANG Rongling, et al. Experimental study of the identification and classification of ballastless track subgrade expansive soil[J]. Science Technology and Engineering,2017,17(12):248 − 251. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2017.12.044
    [15] 铁路工程岩土化学分析规程: TB 10103—2008[S]. 北京: 中国铁道出版社, 2009.

    Regulations for rock and soil chemical analysis of railway engineering: TB 10103—2008[S]. Beijing: China Railway Publishing House, 2009. (in Chinese)

    [16] 铁路工程岩土分类标: TB10077—2001[S]. 北京: 中国铁道出版社, 2001.

    Code for rock and soil classification: TB10077—2001[S]. Beijing: China Railway Publishing House. 2001. (in Chinese)

    [17] 袁琳. 蒙脱石的胀缩机理及改性技术研究[D]. 长沙: 长沙理工大学, 2007.

    YUAN Lin. The swelling and shrinking mechanism and modifieation of montmorillonite[D]. Changsha: Changsha University of Science & Technology, 2007. (in Chinese)

    [18] 王林洲. 公路工程中膨胀土判别试验研究[D]. 济南: 山东大学, 2007.

    WANG Linzhou. Swollens Sentenved research in the highway engineering[D]. Jinan: Shandong University, 2007. (in Chinese)

  • 期刊类型引用(0)

    其他类型引用(3)

图(8)  /  表(8)
计量
  • 文章访问数:  481
  • HTML全文浏览量:  345
  • PDF下载量:  154
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-01-11
  • 修回日期:  2020-02-18
  • 网络出版日期:  2021-02-25
  • 刊出日期:  2021-02-25

目录

    /

    返回文章
    返回