ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

陕西富平黄土震陷特性及震陷小区划

任森, 邓龙胜, 范文, 徐良鑫, 刘少鹏

任森,邓龙胜,范文,等. 陕西富平黄土震陷特性及震陷小区划[J]. 中国地质灾害与防治学报,2023,34(4): 134-143. DOI: 10.16031/j.cnki.issn.1003-8035.202011014
引用本文: 任森,邓龙胜,范文,等. 陕西富平黄土震陷特性及震陷小区划[J]. 中国地质灾害与防治学报,2023,34(4): 134-143. DOI: 10.16031/j.cnki.issn.1003-8035.202011014
REN Sen,DENG Longsheng,FAN Wen,et al. Characteristics of loess seismic subsidence and corresponding micro-zonation for the Fuping Country, Shaanxi[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4): 134-143. DOI: 10.16031/j.cnki.issn.1003-8035.202011014
Citation: REN Sen,DENG Longsheng,FAN Wen,et al. Characteristics of loess seismic subsidence and corresponding micro-zonation for the Fuping Country, Shaanxi[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4): 134-143. DOI: 10.16031/j.cnki.issn.1003-8035.202011014

陕西富平黄土震陷特性及震陷小区划

基金项目: 国家自然科学基金项目(41630634;41877245)
详细信息
    作者简介:

    任 森(1995-),男,陕西西安人,硕士研究生。主要从事黄土边坡动力响应和地震工程方面的研究工作。E-mail:1587426329@qq.com

    通讯作者:

    邓龙胜(1981-),男,云南镇雄人,工学博士,教授,博士研究生导师。主要从事黄土微结构、黄土力学和地质灾害方面的研究工作。E-mail:deng32120@yahoo.com.cn

  • 中图分类号: P694

Characteristics of loess seismic subsidence and corresponding micro-zonation for the Fuping Country, Shaanxi

  • 摘要: 典型黄土由于其特殊的大孔隙架空结构特征,在强震作用下具有强烈的震陷性。陕西富平县地处渭河盆地和鄂尔多斯地台的连接带,区内地震构造背景复杂,黄土分布广泛,黄土场地的震陷危险性较高。文章以富平县城市总体规划建设用地和富阎新区规划范围为研究区,通过资料收集、野外调研、室内试验和理论分析等方法,确定研究区的地震工程地质条件,采用地震危险性概率分析方法确定研究区不同超越概率水平的地震动参数,基于大量黄土动三轴试验确定区内不同地貌单元及不同地层黄土的震陷特性。在此基础上,对富平县强震作用下黄土场地的震陷进行评价,50 年超越概率10%条件下,研究区内轻微、中等震陷区分布于浮塬和渭河二级阶地。50年超越概率2%条件下,研究区内轻微及中等黄土震陷区主要分布在石川河三—四级阶地、浮塬和渭河二级阶地。严重震陷区主要分布在渭河二级阶地、石川河三—四级阶地和浮塬。根据震陷等级给出了研究区50年超越概率10%和2%水平下的黄土震陷小区划。研究结果可为富平县的防震减灾工作提供科学依据。
    Abstract: Typical loess generally shows the property of strong seismic subsidence due to its special microstructure characteristics. Fuping County which is located in the connection zone of Weihe Basin and Ordos Platform possesses complex seismic tectonic settings, high seismic fortification intensity, and widely distributed loess strata. Consequently, the risk of loess seismic subsidence is relatively high for the loess site of the region. In this paper, the regions of Fuping City and Fuping-Yanliang new area were chosen as the study area. The technical methods, such as data collection, field investigation, laboratory test, and theoretical analysis, were adopted to determine the seismic geological conditions of the region. The ground motion parameters with different transcendental probability levels were obtained by adopting the probability analysis method of seismic risk. The seismic subsidence properties of loess from various landforms and strata were studied based on a large number of dynamic triaxial tests. On this basis, Evaluate the seismic subsidence of loess sites under strong earthquakes in Fuping County. Under the condition of a probability of exceeding 10% in 50 years, mild and moderate seismic subsidence areas in the study area are distributed in the Fuyuan and Weihe secondary terraces. Under the condition of a probability of exceeding 2% in 50 years, the mild and moderate loess seismic subsidence areas in the study area are mainly distributed in the third to fourth level terraces of the Shichuan River, the floating plateau, and the second level terraces of the Wei River. Severe seismic subsidence areas are mainly distributed in the second level terraces of the Weihe River, the third to fourth level terraces of the Shichuan River, and the floating plateau. Based on the seismic subsidence level, the loess seismic subsidence sub regions of the study area were given at the 10% and 2% probability of exceedance in 50 years. Attention should be paid to this part of potential earthquake geological disaster in the design of prevention and foundation.
  • 我国黄土高原及周缘地区构造背景复杂,历史强震发育。黄土高原位于青藏地震区、华北地震区和华南地震区的交会部位,以鄂尔多斯地台为中心,在地台的周缘,分布有大量活跃的地震构造带,如六盘山—祁连山地震带、汾渭地震带、华北平原地震带、银川—河套地震带等,其地震构造非常复杂,是一个历史强震和现代地震频发的区域。根据现代地震台网监测资料,黄土高原及周缘地区1970—2019年间区内共发生2.0~4.0级现代地震7670余次。根据对历史地震目录的统计,区内共记录到M≥4¾级地震420次,其中8.0~8.9级地震7次,7.0~7.9级地震18次,6.0~6.9级地震61次,5.0~5.9级地震249次,4.7~4.9级地震86次,最大地震为1920年宁夏海原8.5级地震。区内发生的许多破坏性地震,如1556年华县8¼级地震、1654年天水8级地震、1920年海原8.5级地震、1927年古浪8级地震等,均造成了灾难性的后果。尤其是1920海原地震触发大量地质灾害,其数量之多、规模之大、类型之复杂、造成损失之惨重,举世罕见[1]。当前黄土高原及周缘地区7级地震复发周期已经接近,强震风险日益增高,地震地质灾害风险和威胁日趋严峻。

    典型黄土是一种结构性土,具有大孔隙、弱胶结的架空结构特征,在我国黄土高原地区分布广泛。黄土在强震作用下具有强烈的地震易损性,其中震陷性是黄土最典型的灾害特性之一。黄土震陷除使自身宏观强度及变形特征发生改变、极易引发土体整体失稳与破坏之外[2],还会产生降低桩摩阻力等工程问题[3],因此受到国内外科研和工程技术人员的广泛关注。针对黄土震陷机理、评价和防治等方面,不同学者开展了大量的研究工作。在黄土震害调查方面,陈永明等[4]、张振中等[5]对1995年永登5.8级地震诱发的黄土震陷灾害开展了全面的调查研究。对于震陷影响因素方面,Prakash深入研究了美国中部黄土的液化特性,研究了该地区的抗液化能力受物性指标和粒径分布的影响[6]。主要考虑黄土不同的物理性质、加载条件等,确定了各物性指标及荷载参数对黄土震陷特性的影响效应[7-9],以及黄土震陷性的区域变化规律[10-13]。部分学者研究了黄土震陷的微观机制[14-15],提出了黄土震陷的评价模型和方法[16-18],同时对黄土震陷引发的次生灾害的灾变机理与破坏模式进行了研究[19],这些研究成果在典型工程及重要城镇的震害预测和抗震设防中得到应用[20]。在黄土震陷的防治方面,从土性改良[21]和地基处理[22-23]等方面开展了大量研究,为重大工程的抗震设防提供了依据。上述大量研究成果,为黄土震陷灾害的评价和预测提供了重要的理论依据。

    富平县地处渭河盆地和鄂尔多斯地台的连接带,区内地震构造背景复杂,黄土分布广泛,黄土场地的震陷危险性较高。本文以富平县城市总体规划建设用地和富阎新区规划范围为研究区,通过资料收集、野外调研、室内试验和理论分析等方法,确定研究区的地震工程地质条件,采用地震危险性概率分析方法确定研究区不同超越概率水平的地震动参数,基于大量黄土动三轴试验确定区内不同地貌单元及不同地层黄土的震陷特性。在此基础上,研究确定区内黄土场地的震陷小区划,研究结果可为富平县的防震减灾工作提供科学依据。

    研究区位于陕西省中部,关中平原和陕北高原的过渡地带,属渭北黄土高原沟壑区,其具体位置如图1所示。区内地形总体西北高东南低,地势比较平坦,相对高差小于200 m。为查明研究区的地层结构及岩土体类型,共布设了199个钻孔,其中断层控制孔79个,场地控制孔117个,已有钻孔3个,钻孔深度主要为80~100 m。

    图  1  渭北黄土高原地质地貌图及研究区位置
    Figure  1.  Location and geological and geomorphological map of the study area

    根据资料收集、野外调查、现场勘察和资料分析,确定了研究区的地震工程地质条件。研究区内发育有3条断裂,断裂名称及活动时代分别为:淡村—龙阳断裂(Qp)、三井—乔家断裂(Qh)和口镇—关山断裂(Qp)。区内主要分布有黄土塬和河流阶地两大地貌类型,具体包括荆山塬、华阳塬、浮塬,温泉河漫滩和一级阶地,石川河漫滩和一、二、三至四级阶地,渭河二级阶地,研究区地质地貌图如图2所示。

    图  2  研究区地质地貌图
    Figure  2.  Geological and geomorphological map of the study area

    场地内的岩土体类型主要为黄土类土、粉质黏土、粉土、砂土、卵石及人工填土等。各地貌单元的地层结构如图3所示。由图可见:在钻孔揭露深度范围内,黄土塬为黄土—古土壤的互层结构;石川河三—四级阶地为含3~5层古土壤的黄土地层(厚30~40 m)覆盖在河流相地层之上;石川河二级阶地上覆黄土层厚20多米,见1层古土壤;渭河二级阶地上覆黄土层30~40 m,见1层古土壤。在研究区分别布设有南北向(Ⅰ—Ⅰ’)及近东西向(Ⅱ—Ⅱ’)地质剖面,剖面详情具体见图4所示。

    图  3  不同地貌单元典型地层结构图
    Figure  3.  Typical stratigraphic structure of different geomorphic units
    图  4  研究区主要地质剖面图
    Figure  4.  Main geological sections of the study area

    图5给出了研究区的等效剪切波速及地脉动卓越周期的平面分布图。由图可见,场地等效剪切波速均小于500 m/s,且基本大于250 m/s。其中温泉河河床及漫滩及渭河二级阶地的等效剪切波速较低,分别为256.4 m/s及275.4 m/s,石川河河床及漫滩的平均等效剪切波速最高,最大等效剪切波速为422.6 m/s,最小为271.6 m/s,均值为347 m/s。石川河一级阶地和二级阶地的平均剪切波速相差不多,三个黄土塬区的平均等效剪切波速基本一致。整个场地的平均卓越周期较稳定,各地貌单元场地平均卓越周期主要集中在0.30~0.38 s。

    图  5  研究区等效剪切波速及卓越周期分布图
    Figure  5.  Distribution of equivalent shear wave velocity and predominant period in the study area

    在地震危险性概率分析的基础上,确定了研究区50年超越概率10%和2%的地震动参数区划图,具体见图6所示,各分区的地震动参数如表1所示。

    图  6  研究区地震动参数区划图
    Figure  6.  Seismic parameter zoning map of the study area
    表  1  不同超越概率地震动参数表
    Table  1.  Table of ground motion parameters with different exceedance probabilities
    分区50年超越概率10%50年超越概率2%
    $ {\alpha _{\max }} $/gTg/s$ {\;\beta _{\max }} $$ \gamma $$ {\alpha _{\max }} $/gTg/s$ {\;\beta _{\max }} $$ \gamma $
    AA20.1950.502.50.90.3600.702.50.9
    BB10.2200.452.50.9
    B20.2200.502.50.9
    B30.2200.552.50.90.3800.802.50.9
    B40.3800.852.50.9
    CC10.4100.602.50.9
    C20.4100.702.50.9
      注:${\alpha _{\max }} $为峰值加速度,Tg为特征周期,${\;\beta _{\max }} $为结构物加速度的放大倍数,$\gamma $为衰减系数 。
    下载: 导出CSV 
    | 显示表格

    本研究在不同地貌单元不同深度处采取黄土试样,开展黄土的震陷试验,据此研究黄土的震陷性。研究区黄土主要分布在黄土塬、石川河二级和三—四级阶地,以及渭河二级阶地,取样深度分别控制为5 m、10 m和15 m。室内动三轴试验采用K0固结,其固结压力根据上覆土体自重设置。激振动荷载采用正弦波,加载频率为1 Hz,加载循环周次为5次。

    本次研究采用指数函数作为黄土的震陷模型,据此对黄土的震陷性进行拟合。模型表达式如式(1)所示。其中,AB为试验参数,$ {\varepsilon _{\rm{p}}} $为残余应变,$ {\sigma _{\rm{d}}} $为动应力。$ {\sigma _{{\rm{d}}0}} $为震陷起始动应力,$ {\sigma _{{\rm{du}}}} $为极限动应力。试验结果及其拟合曲线、拟合参数见图7

    图  7  黄土震陷试验拟合曲线及参数
    Figure  7.  Fitting curve and parameters of loess seismic subsidence test
    $$ {\varepsilon _{\text{p}}} = \left\{\begin{split} & 0\quad\quad\quad\quad\quad\;{(0\leqslant {\sigma _{\rm{d}}} < {\sigma _{{\rm{d}}0}})} \\ & {A\exp (B{\sigma _{\rm{d}}})}\quad {({\sigma _{{\rm{d}}0}} \leqslant {\sigma _{\rm{d}}} < {\sigma _{{\rm{du}}}})} \end{split}\right. $$ (1)

    为了分析不同地貌单元黄土的震陷性差异,将不同地貌单元相同深度的黄土试样震陷曲线进行均值化处理,并进行对比分析,结果见图8所示。

    图  8  不同地貌单元黄土震陷曲线对比分析
    Figure  8.  Comparison and analysis of seismic subsidence curve of loess in different geomorphic units

    由图可见:各个地貌单元的震陷曲线特征较为相似,随着黄土层深度增大,产生相同震陷所需的动应力越大。在相同动应力条件下,黄土台塬的震陷系数最小,其次为石川河三—四级阶地,石川河二级阶地最大。可见研究区低阶地黄土震陷性强,其次为高阶地,黄土塬震陷性最小。

    图9给出了不同地貌单元黄土震陷拟合参数的对比,由图可见:同一地貌单元同一深度AB值随着土层深度增大而减小,且同一地貌单元不同深度处的AB值变化率基本在50%~65%。不同地貌单元在同一深度处的AB值有所不同,黄土台塬最大,其次是石川河三—四级阶地,然后是渭河二级阶地,石川河二级阶地最小。

    图  9  不同地貌单元及不同深度黄土震陷拟合参数对比分析
    Figure  9.  Comparative analysis of fitting parameters of loess seismic subsidence in different geomorphic units and depths

    研究区黄土场地主要为黄土-古土壤的层状结构,根据地形地貌条件按照水平层状模型将场地考虑为一维计算模型,用分层总和思想计算黄土场地的震陷量。根据各钻孔地层结构及各层土体物理力学参数,结合不同超越概率条件下地震动参数和相应土体震陷曲线,确定不同地层土体的震陷系数及钻孔震陷量。以此为基础开展研究区50年超越概率10%和2%的黄土震陷小区划,结果如图10所示。

    图  10  研究区震陷小区划
    Figure  10.  Seismic subsidence zoning in the study area

    由图可见:在50年超越概率10%条件下,场地轻微黄土震陷区主要分布于浮塬和渭河二级阶地,震陷面积约3.5 km2。中等黄土震陷区分布于浮塬及渭河二级阶地,震陷面积约3.9 km2,其余黄土区属于不震陷区。

    50年超越概率2%条件下,场地轻微及中等震陷区主要分布于石川河二级阶地和浮塬上,轻微震陷区面积约5.3 km2。中等震陷区面积约15.7 km2。严重震陷区主要分布在浮塬、渭河二级阶地以及石川河三—四级阶地,石川河河床及漫滩也有较小范围分布,震陷面积约9.9 km2,其余黄土区属于不震陷区。

    黄土震陷是黄土高原地区最典型的灾害之一,严重威胁着当地的经济建设和居民的生命财产安全。本文通过资料收集、野外调研、室内试验和理论分析等方法,对富平县黄土震陷特性及其区划特征进行了研究,主要结论如下:

    (1)典型震陷曲线表现为初始变形、曲线变形及剪切变形三个阶段。不同深度黄土震陷曲线具有相似的变化规律。随着深度的增加,产生明显震陷所需的动应力越来越大,20m以下土样不具明显的震陷性。

    (2)研究区内低阶地黄土震陷性较强,其次为高阶地,黄土台塬区黄土震陷性相对较小。通过综合分析研究区不同地貌单元黄土的震陷特性,建立的震陷曲线的分段函数数学模型精度较高,可为研究区其他区域的震陷预测提供参考。

    (3)50年超越概率10%条件下,研究区内轻微、中等震陷区分布于浮塬和渭河二级阶地,其余黄土区属于不震陷区。50年超越概率2%条件,研究区内轻微及中等黄土震陷区主要分布在石川河三—四级阶地、浮塬和渭河二级阶地。严重震陷区主要分布在渭河二级阶地、石川河三—四级阶地和浮塬,其余黄土区属于不震陷区。根据震陷等级给出了研究区50年超越概率10%和2%水平下的黄土震陷小区划。可为富平县及富阎新区的城市规划及防灾减灾工作提供一定的依据。

  • 图  1   渭北黄土高原地质地貌图及研究区位置

    Figure  1.   Location and geological and geomorphological map of the study area

    图  2   研究区地质地貌图

    Figure  2.   Geological and geomorphological map of the study area

    图  3   不同地貌单元典型地层结构图

    Figure  3.   Typical stratigraphic structure of different geomorphic units

    图  4   研究区主要地质剖面图

    Figure  4.   Main geological sections of the study area

    图  5   研究区等效剪切波速及卓越周期分布图

    Figure  5.   Distribution of equivalent shear wave velocity and predominant period in the study area

    图  6   研究区地震动参数区划图

    Figure  6.   Seismic parameter zoning map of the study area

    图  7   黄土震陷试验拟合曲线及参数

    Figure  7.   Fitting curve and parameters of loess seismic subsidence test

    图  8   不同地貌单元黄土震陷曲线对比分析

    Figure  8.   Comparison and analysis of seismic subsidence curve of loess in different geomorphic units

    图  9   不同地貌单元及不同深度黄土震陷拟合参数对比分析

    Figure  9.   Comparative analysis of fitting parameters of loess seismic subsidence in different geomorphic units and depths

    图  10   研究区震陷小区划

    Figure  10.   Seismic subsidence zoning in the study area

    表  1   不同超越概率地震动参数表

    Table  1   Table of ground motion parameters with different exceedance probabilities

    分区50年超越概率10%50年超越概率2%
    $ {\alpha _{\max }} $/gTg/s$ {\;\beta _{\max }} $$ \gamma $$ {\alpha _{\max }} $/gTg/s$ {\;\beta _{\max }} $$ \gamma $
    AA20.1950.502.50.90.3600.702.50.9
    BB10.2200.452.50.9
    B20.2200.502.50.9
    B30.2200.552.50.90.3800.802.50.9
    B40.3800.852.50.9
    CC10.4100.602.50.9
    C20.4100.702.50.9
      注:${\alpha _{\max }} $为峰值加速度,Tg为特征周期,${\;\beta _{\max }} $为结构物加速度的放大倍数,$\gamma $为衰减系数 。
    下载: 导出CSV
  • [1] 彭达,杨顺,李孝波. 甘肃通渭县黄土地震滑坡分布特征及发育机理[J]. 中国地质灾害与防治学报,2017,28(3):31 − 38. [PENG Da,YANG Shun,LI Xiaobo. Distribution and mechanism of loess landslides induced by earthquake in Tongwei,Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2017,28(3):31 − 38. (in Chinese with English abstract)

    PENG Da, YANG Shun, LI Xiaobo. Distribution and mechanism of loess landslides induced by earthquake in Tongwei, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2017, 28(3): 31-38. (in Chinese with English abstract)

    [2]

    CHEN Tuo, MA Wei, WANG Jianzhou. Numerical analysis of ground motion effects in the loess regions of Western China[J]. Shock and Vibration,2017,2017:1 − 9.

    [3]

    WANG Lanmin, SUN Junjie, HUANG Xuefeng, et al. A field testing study on negative skin friction along piles induced by seismic subsidence of loess[J]. Soil Dynamics and Earthquake Engineering,2011,31(1):45 − 58. DOI: 10.1016/j.soildyn.2010.08.003

    [4] 陈永明,石玉成,徐晖平,等. 1995年永登地震黄土震陷变形特征及其形成机理[J]. 西北地震学报,2000(4):465 − 470. [CHEN Yongming,SHI Yucheng,XU Huiping,et al. Deformation characteristic of seidmic subsidence and its formation mechanism of loess of the Yongdeng earthquake in 1995[J]. Northwestern Seismological Journal,2000(4):465 − 470. (in Chinese with English abstract)

    CHEN Yongming, SHI Yucheng, XU Huiping, et al. Deformation characteristic of seidmic subsidence and its formation mechanism of loess of the Yongdeng earthquake in 1995[J]. Northwestern Seismological Journal, 2000(4): 465-470. (in Chinese with English abstract)

    [5] 张振中,张冬丽. 黄土震陷灾害典型震例的综合研究[J]. 西北地震学报,2005,27(1):36 − 41. [ZHANG Zhenzhong,ZHANG Dongli,LIU Hongmei. Comprehensive study on seismic subsidence of loess under earthquake[J]. Northwestern Seismological Journal,2005,27(1):36 − 41. (in Chinese with English abstract)

    ZHANG Zhenzhong, ZHANG Dongli, LIU Hongmei. Comprehensive study on seismic subsidence of loess under earthquake[J]. Northwestern Seismological Journal, 2005, 27(1): 36-41. (in Chinese with English abstract)

    [6]

    PRAKASH S,SANDOVAL J A. Liquefaction of low plasticity silts[J]. Soil Dynamics and Earthquake Engineering,1992,11(7):373 − 379. DOI: 10.1016/0267-7261(92)90001-T

    [7] 屈宏录,刘德仁,孙英萍,等. 深厚黄土地基浸水湿陷变形及竖向土压力作用分析[J]. 水文地质工程地质,2022,49(4):157 − 164. [QU Honglu,LIU Deren,SUN Yingping,et al. Analysis of collapsible deformation and vertical soil pressure action of thick loess foundation[J]. Hydrogeology & Engineering Geology,2022,49(4):157 − 164. (in Chinese with English abstract)

    [QU Honglu, LIU Deren, SUN Yingping, et al. Analysis of collapsible deformation and vertical soil pressure action of thick loess foundation[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 157-164.(in Chinese with English abstract)

    [8] 许书雅,王平,钟秀梅,等. 强震作用下抗震陷黄土改良地基的微观特征分析[J]. 地震工程学报,2019,41(3):724 − 730. [XU Shuya,WANG Ping,ZHONG Xiumei,et al. Microscopic characteristics of improved aseismic subsidence loess foundations under strong earthquakes[J]. China Earthquake Engineering Journal,2019,41(3):724 − 730. (in Chinese with English abstract)

    XU Shuya, WANG Ping, ZHONG Xiumei, et al. Microscopic characteristics of improved aseismic subsidence loess foundations under strong earthquakes[J]. China Earthquake Engineering Journal, 2019, 41(3): 724-730. (in Chinese with English abstract)

    [9] 邓龙胜,范文. 随机地震荷载作用下黄土震陷的影响因素研究[J]. 岩石力学与工程学报,2011,30(9):1924 − 1931. [DENG Longsheng,FAN Wen. Study of influencing factors of loess seismic subsidence induced by stochastic seismic load[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(9):1924 − 1931. (in Chinese with English abstract)

    DENG Longsheng, FAN Wen. Study of influencing factors of loess seismic subsidence induced by stochastic seismic load[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9): 1924-1931. (in Chinese with English abstract)

    [10] 钱法桥,邓亚虹,慕焕东,等. 吕梁山区黄土物理性质力学参数区域分布特征[J]. 中国地质灾害与防治学报,2022,33(2):61 − 70. [QIAN Faqiao,DENG Yahong,MU Huandong,et al. Distributive characteristics of physical and mechaniscal parameters of the loess soils in Lüliang mountainous area[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):61 − 70. (in Chinese with English abstract)

    [QIAN Faqiao, DENG Yahong, MU Huandong, et al. Distributive characteristics of physical and mechaniscal parameters of the loess soils in Lüliang mountainous area[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 61-70.(in Chinese with English abstract)

    [11] 邓津,安亮. 天水黄土震陷性与微观孔隙参数分析[J]. 防灾科技学院学报,2018,20(2):6 − 14. [DENG Jin,AN Liang. Analysis on Tianshui loess seismicity and its microscopic pore parameters[J]. Journal of Institute of Disaster Prevention,2018,20(2):6 − 14. (in Chinese with English abstract)

    DENG Jin, AN Liang. Analysis on Tianshui loess seismicity and its microscopic pore parameters[J]. Journal of Institute of Disaster Prevention, 2018, 20(2): 6-14. (in Chinese with English abstract)

    [12] 刘景奎,范文,邓龙胜,等. 西咸新区地震小区划[J]. 世界地震工程,2016,32(2):183 − 189. [LIU Jingkui,FAN Wen,DENG Longsheng,et al. Seismic micro- zoning of Xixian new area[J]. World Earthquake Engineering,2016,32(2):183 − 189. (in Chinese with English abstract)

    LIU Jingkui, FAN Wen, DENG Longsheng, et al. Seismic micro- zoning of Xixian new area[J]. World Earthquake Engineering, 2016, 32(2): 183-189. (in Chinese with English abstract)

    [13] 郭乐,王家鼎,谷天峰. 宝鸡市渭北台塬马兰黄土震陷特性研究[J]. 水文地质工程地质,2012,39(2):61 − 65. [GUO Le,WANG Jiading,GU Tianfeng. A study of loess seismic subsidence of tableland to the north Weihe River in Baoji City[J]. Hydrogeology & Engineering Geology,2012,39(2):61 − 65. (in Chinese with English abstract)

    GUO Le, WANG Jiading, GU Tianfeng. A study of loess seismic subsidence of tableland to the north Weihe River in Baoji City[J]. Hydrogeology & Engineering Geology, 2012, 39(2): 61-65. (in Chinese with English abstract)

    [14] 王兰民, 邓津, 黄媛. 黄土震陷性的微观结构量化分析[J]. 岩石力学与工程学报, 2007, 26(增刊1): 3025 − 3031

    WANG Lanmin, DENG Jin, HUANG Yuan. Quantitative analysis of microstructure of loess seismic subsidence[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(Sup 1): 3025 − 3031. (in Chinese with English abstract)

    [15] 王强,邵生俊,王峻,等. 黄土场地震陷的灾害特征及成因研究综述[J]. 地震研究,2016,39(4):692 − 702. [WANG Qiang,SHAO Shengjun,WANG Jun,et al. Review on disaster characteristics of the seismic subsidence of loess site and its formation causes[J]. Journal of Seismological Research,2016,39(4):692 − 702. (in Chinese with English abstract)

    WANG Qiang, SHAO Shengjun, WANG Jun, et al. Review on disaster characteristics of the seismic subsidence of loess site and its formation causes[J]. Journal of Seismological Research, 2016, 39(4): 692-702. (in Chinese with English abstract)

    [16] 邓津,王兰民,吴志坚,等. 黄土抗震陷变形的酸改性方法及其微观结构分析[J]. 岩土力学,2012,33(12):3624 − 3631. [DENG Jin,WANG Lanmin,WU Zhijian,et al. Acid-modified method for loess aseismic subsidence and its microstructure analysis[J]. Rock and Soil Mechanics,2012,33(12):3624 − 3631. (in Chinese with English abstract)

    DENG Jin, WANG Lanmin, WU Zhijian, et al. Acid-modified method for loess aseismic subsidence and its microstructure analysis[J]. Rock and Soil Mechanics, 2012, 33(12): 3624-3631. (in Chinese with English abstract)

    [17] 孙军杰,王兰民,秋仁东,等. 基于物理力学机制的黄土震陷数学估算模型[J]. 工程力学,2012,29(5):53 − 60. [SUN Junjie,WANG Lanmin,QIU Rendong,et al. A mathematical estimation model for seismic subsidence of loess based on physical-mechanical mechanism[J]. Engineering Mechanics,2012,29(5):53 − 60. (in Chinese with English abstract)

    SUN Junjie, WANG Lanmin, QIU Rendong, et al. A mathematical estimation model for seismic subsidence of loess based on physical-mechanical mechanism[J]. Engineering Mechanics, 2012, 29(5): 53-60. (in Chinese with English abstract)

    [18] 邓龙胜, 范文. 地震荷载作用下黄土的动应力-应变关系研究[J]. 岩石力学与工程学报, 2012, 31(增刊1): 3174 − 3180

    DENG Longsheng, FAN Wen. Study of dynamic stress-strain relationship of loess under seismic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(Sup 1): 3174 − 3180. (in Chinese with English abstract)

    [19]

    PU X W,WANG L M,WANG P,et al. Study of shaking table test of seismic subsidence loess landslides induced by the coupling effect of earthquakes and rainfall[J]. Natural Hazards,2020,103(1):923 − 945. DOI: 10.1007/s11069-020-04019-3

    [20] 范文,魏亚妮,于渤,等. 黄土湿陷微观机理研究现状及发展趋势[J]. 水文地质工程地质,2022,49(5):144 − 156. [FAN Wen,WEI Yani,YU Bo,et al. Research progress and prospect of loess collapsible mechanism in micro-level[J]. Hydrogeology & Engineering Geology,2022,49(5):144 − 156. (in Chinese with English abstract)

    [FAN Wen, WEI Yani, YU Bo, et al. Research progress and prospect of loess collapsible mechanism in micro-level[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 144-156.(in Chinese with English abstract)

    [21] 高中南,钟秀梅,王峻,等. 粉煤灰改良饱和黄土动力特性研究[J]. 世界地震工程,2019,35(3):91 − 98. [GAO Zhongnan,ZHONG Xiumei,WANG Jun,et al. Dynamic characteristics of saturated loess improved by fly ash[J]. World Earthquake Engineering,2019,35(3):91 − 98. (in Chinese with English abstract)

    GAO Zhongnan, ZHONG Xiumei, WANG Jun, et al. Dynamic characteristics of saturated loess improved by fly ash[J]. World Earthquake Engineering, 2019, 35(3): 91-98. (in Chinese with English abstract)

    [22] 李新明. 湿陷性黄土地区建筑地基处理技术研究[J]. 工程建设与设计,2019(16):45 − 46. [LI Xinming. Research on building foundation treatment technology in collapsible loess area[J]. Construction & Design for Engineering,2019(16):45 − 46. (in Chinese with English abstract)

    LI Xinming. Research on building foundation treatment technology in collapsible loess area[J]. Construction & Design for Engineering, 2019(16): 45-46. (in Chinese with English abstract)

    [23] 许书雅,王平,王峻,等. 强震作用下不同处理方式黄土地基抗震陷性能评价[J]. 地震工程学报,2018,40(6):1198 − 1205. [XU Shuya,WANG Ping,WANG Jun,et al. Evaluation of aseismic subsidence of loess foundation with different ground treatments under strong earthquake[J]. China Earthquake Engineering Journal,2018,40(6):1198 − 1205. (in Chinese with English abstract)

    XU Shuya, WANG Ping, WANG Jun, et al. Evaluation of aseismic subsidence of loess foundation with different ground treatments under strong earthquake[J]. China Earthquake Engineering Journal, 2018, 40(6): 1198-1205. (in Chinese with English abstract)

  • 期刊类型引用(2)

    1. 王昱琛,谢婉丽,高帅,刘欣鹏,薛芬芬. 关中平原与黄土高原过渡带地质灾害危险性耦合评价模型研究——以渭南市富平县为例. 灾害学. 2024(04): 200-206+227 . 百度学术
    2. 胡长明,张思梦,钱家志,张勇. 黄土地基震陷可靠度分析Kriging代理模型研究. 中国地质灾害与防治学报. 2024(06): 106-114 . 本站查看

    其他类型引用(1)

图(10)  /  表(1)
计量
  • 文章访问数:  1249
  • HTML全文浏览量:  1778
  • PDF下载量:  695
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-11-07
  • 修回日期:  2020-12-25
  • 网络出版日期:  2023-06-14
  • 刊出日期:  2023-08-21

目录

/

返回文章
返回