ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

地震条件下悬臂式挡墙主动土压力的极限分析方法

李志浩, 肖世国

李志浩, 肖世国. 地震条件下悬臂式挡墙主动土压力的极限分析方法[J]. 中国地质灾害与防治学报, 2020, 31(5): 79-87. DOI: 10.16031/j.cnki.issn.1003-8035.2020.05.11
引用本文: 李志浩, 肖世国. 地震条件下悬臂式挡墙主动土压力的极限分析方法[J]. 中国地质灾害与防治学报, 2020, 31(5): 79-87. DOI: 10.16031/j.cnki.issn.1003-8035.2020.05.11
LI Zhihao, XIAO Shiguo. Limit analysis method of active earth pressure on cantilever retaining wall subjected to earthquake[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(5): 79-87. DOI: 10.16031/j.cnki.issn.1003-8035.2020.05.11
Citation: LI Zhihao, XIAO Shiguo. Limit analysis method of active earth pressure on cantilever retaining wall subjected to earthquake[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(5): 79-87. DOI: 10.16031/j.cnki.issn.1003-8035.2020.05.11

地震条件下悬臂式挡墙主动土压力的极限分析方法

基金项目: 

国家自然科学基金资助项目(51578466)

详细信息
    作者简介:

    李志浩(1994-),男,四川德阳人,硕士,主要从事边坡支挡结构方面的研究及岩土工程勘测工作。E-mail:lycheeh@swepdi.com

    通讯作者:

    肖世国(1973-),男,辽宁东港人,博士,教授,博士生导师,主要从事边坡稳定性与支挡结构方面的研究。E-mail:xiaoshiguo@swjtu.cn

  • 中图分类号: TU432

Limit analysis method of active earth pressure on cantilever retaining wall subjected to earthquake

  • 摘要: 为确定地震条件下悬臂式挡土墙主动土压力,考虑假想坦墙墙背的可能不同位置,给出了墙后填土5种可能的失稳破坏模式;在此基础上,采用拟静力法,基于极限分析上限定理,推导了作用于坦墙墙背上的地震主动土压力计算公式,包括填土性质、填方坡面倾角、踵板长度、墙体高度、水平及竖向地震影响系数等多因素,其中除填土黏聚力与竖向地震影响系数与该土压力呈线性相关性外,其余因素呈非线性影响。实例分析表明,基于本方法地震土压力而计算的墙体抗滑与抗倾稳定系数,多数情况下均比经典的Mononobe-Okabe法略偏大;在填土中存在第二破裂面情况下,以踵板下边缘作为假想墙背端点的计算模式相对略偏不安全;竖直假想墙背模式相应的土压力计算值最小,但相应的墙体稳定系数却不一定最大。
    Abstract: In order to determine the seismic active earth pressure on cantilever retaining walls, five potential failure modes of the backfill are provided considering the possible locations of the assumed planar back of the walls. Based on the potential failure mechanisms, formulas of the earth pressure on the planar back are derived in light of the quasi-static method and upper bound theory of the kinematical limit analysis, which can reflect various influence factors including properties of the backfill, dip angle of the filling surface, length of base slab with heel, wall height, as well as horizontal and vertical seismic impact factors. Most of the influence factors are nonlinearly linked with the earth pressure except for cohesion of the backfill and vertical seismic impact factor. Analysis results of some examples show that overturning and translating factors of safety of the wall determined via the earth pressure by the proposed method are both slightly higher than those by the Mononobe-Okabe mehtod in most practical cases, and the analysis model of the assumed wallback starting exactly from the bottom of the wall heel is relatively marginally unsafe if there is the second failure surface in the backfill. The seismic active earth pressure obtained by the failure mode with vertically assumed wall back is relatively minimum, but the corresponding two factors of safety are not certainly maximum.
  • [1] 中华人民共和国铁道部. 铁路路基支挡结构设计规范:TB 10025-2006[S]. 北京:中国铁道出版社, 2009.[Ministry of Railways of the People's Republic of China. Code for design on retaining structures of railway subgrade:TB 10025-2006[S]. Beijing:China Railway Publishing House, 2009.

    (in Chinese)]

    [2] 李海光, 等. 新型支挡结构设计与工程实例[M]. 北京:人民交通出版社, 2011.[LI H G, et al. Design and engineering example of new retaining structures[M]. Beijing:China Communications Press, 2011.(in Chinese)]
    [3]

    JADHAV P, SINGH M, PRASHANT A. Permanent displacement based seismic design chart for cantilever retaining walls[J]. Proceedings of GeoShanghai 2018 International Conference:Advances in Soil Dynamics and Foundation Engineering, 2018:543-550.

    [4] 王贻荪, 赵明华. 地震土压力一般解及其工程应用[J]. 湖南大学学报(自然科学版), 1990, 17(4):76-82.[WANG Y S, ZHAO M H. General solution of earthquake-induced soil pressure and its engineering application[J]. Journal of Hunan University (Natural Science), 1990, 17(4):76-82.(in Chinese)]
    [5] 刘忠玉, 杨会朋, 何盛东. 刚性挡土墙地震主动土压力的非线性分布[J]. 郑州大学学报(工学版), 2004, 25(2):36-38.[LIU Z Y, YANG H P, HE S D. Nonlinear distribution of seismic active earth pressure on rigid retaining walls[J]. Journal of Zhengzhou University (Engineering Science), 2004, 25(2):36-38.(in Chinese)]
    [6] 夏唐代, 孔祥冰, 王志凯, 等. 挡土墙后黏性土的地震主动土压力分析[J]. 岩石力学与工程学报, 2012, 31(增刊1):3188-3195.[XIA T D, KONG X B, WANG Z K, et al. Analysis of seismic active earth pressure of cohesive soil behind retaining wall[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31

    (Sup1):3188-3195.(in Chinese)]

    [7]

    GRECO V R. Seismic active thrust on cantilever walls with short heel[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(2):249-252.

    [8]

    KLOUKINAS P, SANTOLOA S D, PENNA A, et al. Investigation of seismic response of cantilever retaining walls:Limit analysis vs shaking table testing[J]. Soil Dynamics and Earthquake Engineering, 2015, 77:432-445.

    [9] 张勇. 悬臂式挡土墙土压力研究[D]. 太原:太原理工大学, 2013.[ZHANG Y. Study of earth pressure on cantilever retaining wall[D]. Taiyuan:Taiyuan University of Technology, 2013.(in Chinese)]
    [10]

    OKABE S. General theory on earth pressure and seismic stability of retaining wall and dam[J]. Proc. Civil Engrg. Soc., Japan, 1924, 10(6):1277-1323.

    [11]

    MONONOBE H. Considerations into earthquake vibrations and vibration theories[J]. J. of the Japan Society of Civil Engrg, 1924, 10(5):1063-1094.

    [12]

    KARL T. Theoretical soil mechanics[M]. Hoboken, NJ, USA:John Wiley & Sons, Inc., 1943.

    [13]

    ELLISH B. Use of cycloidal arcs for estimating ditch safety[J]. Journal of the Soil Mechanics and Foundations Division, 1973, 99(2):165-179.

    [14]

    CHEN W F. Limit analysis and soil plasticity[M]. Amsterdam:Elsevier, 1975.

    [15] 梁波, 葛建军. 青藏铁路多年冻土区L型挡土墙综合特性的试验研究[J]. 岩土工程学报, 2011, 33(增刊1):66-71.[LIANG B, GE J J. Comprehensive characteristics of L-type retaining wall in permafrost region of Qinghai-Tibet Railway[J]. Chinese Journal of Geotechnical Engineering, 2011, 33

    (Sup1):66-71.(in Chinese)]

    [16]

    COULOMB CA. Essai sur une application des règles de maximis & minimis à quelques problèmes de statique, relatifs à l'architecture. Mémoires de Mathématiques et de Physique Présentés à l'Académie Royale des Sciences par Divers Savants, et Lus sans ses Assemblées VII, 1776:343-382.

    [17]

    GRECO V R. Active earth thrust on cantilever walls in general conditions[J]. Soils and Foundations, 1999, 39(6):65-78.

  • 期刊类型引用(7)

    1. 李昭颖,肖世国. 悬臂式挡土墙地震主动土压力计算方法. 岩土工程学报. 2023(01): 196-205 . 百度学术
    2. 朱盛延,俞奎皓,王浩. 填土沉降与管涵渗漏条件下高陡挡墙稳定性分析. 安全与环境工程. 2023(03): 171-178 . 百度学术
    3. 刘云龙,张道兵,张标,彭静,沈红良,鲁晓明,孙望成. 基于孔隙水效应的多失效模式下挡土墙可靠性分析. 湖南科技大学学报(自然科学版). 2022(01): 1-9 . 百度学术
    4. 王龙,陈国兴,冯健雪,黄安平,徐美娟. 地震作用下非饱和土主动土压力极限分析半解析法. 地震工程学报. 2022(06): 1309-1316+1421 . 百度学术
    5. 关振长,黄金峰,何亚军,宁茂权. 基于极上限分析的临水深基坑围护结构主动土压力计算. 工程力学. 2022(11): 196-202+256 . 百度学术
    6. 李志浩,肖世国. 不同运动模式的悬臂式挡墙地震永久位移算法. 岩土力学. 2021(03): 723-734 . 百度学术
    7. 郭树仰. 防洪防潮工程悬臂式挡墙土压力数值研究. 陕西水利. 2021(10): 186-188 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  439
  • HTML全文浏览量:  244
  • PDF下载量:  481
  • 被引次数: 11
出版历程
  • 收稿日期:  2020-01-29
  • 修回日期:  2020-03-16
  • 网络出版日期:  2021-01-21

目录

    /

    返回文章
    返回