ISSN 1003-8035 CN 11-2852/P

    高位远程地质灾害多体动力学数值模拟研究综述

    A review of multistate dynamics numerical simulation for high-altitude and long-runout geohazards

    • 摘要: 高位远程地质灾害通常是指包括崩塌、滑坡、碎屑流、泥石流等一种或多种复合成灾的地表地质现象,其动力学过程较为复杂,运动速度与成灾规模较大,严重威胁着工程建设安全与人民生命财产安全。精细化动力学机理研究和高保真数值模拟方法是高位远程地质灾害防控的关键所在。文章根据研究团队多年野外地质调查工作,厘定了颗粒型、液化型、势流型、浊流型4种高位远程地质灾害类型,从本体动力学机理与外部动力学效应2个方面系统性梳理了当前高位远程地质灾害动力学研究的主要进展,并对高位远程地质灾害数值模拟方法进行综述。在此基础上,提出考虑多态转换与多相耦合的高位远程地质灾害多体多相态动力学理论框架,并展望了在地质灾害成灾动力学数值模拟中应该实现的三个转变:(1)“地质适配数值算法”向“数值算法契合地质现象”转变;(2)“经验调参概化计算”向“实际物理力学过程计算”转变;(3)实现“科学研究小尺度计算”向“工程实践的实际尺度计算”转变。研究为高位远程地质灾害的防灾减灾工作提供新的见解。

       

      Abstract: High-altitude and long-runout geohazards encompass a range of surface processes involving single or cascading geological processes such as rockfalls, landslides, debris flows, and mudflows. Characterized by complex dynamics, high mobility, and large volumes, these hazards pose serious risks to infrastructure and human safety in affected regions. A thorough understanding of their dynamic mechanisms and accurate numerical modeling are therefore critical for effective hazard prevention and mitigation. Drawing on extensive field investigations conducted by our research team, this paper classifies high-altitude and long-runout geohazards into four principal types: granular flows, liquefaction-induced flows, dense inertial flows, and turbidity currents. We systematically review recent advances in the study of these hazards, focusing on both internal dynamic mechanisms and external dynamic effects. Furthermore, a comprehensive review of prevailing numerical simulation methods is provided. On this basis, we propose a dynamic theoretical framework incorporating multistate transitions and multiphase coupling for high-altitude and long-runout geohazards, and three critical shifts are outlined for advancing numerical simulation in geohazard dynamics: (1) from "adapting geological phenomena to numerical algorithms " to "adapting numerical algorithms to geological phenomena"; (2) from “empirically calibrated, generalized calculations” to “computations grounded in actual physical and mechanical processes”, (3) from “small-scale computations for scientific research” to “practical-scale simulations for engineering”, offering novel insights for improving hazard prevention and mitigation strategies.

       

    /

    返回文章
    返回