基于SVM的冲击地压分级预测模型及R语言实现
Grading Prediction Model of Rock Burst Based on SVM and Realization of R Language
-
摘要: 采场冲击地压的分级预测对保障矿山安全具有重要的意义。在综合考虑采场冲击地压等级判别的各类影响因素之后,引入支持向量机理论,建立了采场冲击地压等级判别的SVM模型。通过借助R语言实现了分层随机抽样的技术,保证了训练集与测试集样本数据的随机性和差异性。研究表明:基于SVM理论的采场冲击地压分级预测模型,可靠性强、预测准确率高。同时,采场冲击地压分级预测模型程序化语言的实现,对保障工程后期的研究预测的可持续性具有重大的意义。
-
-
[1] [1] 何满潮.深部开采工程岩石力学现状及其展望[A]. 中国岩石力学与工程学会.第八次全国岩石力学与工程学术大会论文集[C].中国岩石力学与工程学会,2004:7. HE Manchao. Present situation and prospect of rock mechanics in deep mining engineering[A]. China Society of Rock Mechanics and Engineering. The Proceedings of the 8th National Conference on Rock Mechanics and Engineering[C]. China Society of Rock Mechanics and Engineering, 2004:7.
[2] [2] 李宝富,刘永磊.冲击地压危险性等级识别的随机森林模型及应用[J].科技导报,2015,3301:57-62. LI Baofu, LIU Yonglei. Determination of classification of rock burst risk based on random forest approach and its application[J]. Science & Technology Review ,2015,3301:57-62.
[3] [3] 文畅平.基于Bayes判别分析法的冲击地压预测与危险性分级[J].自然灾害学报,2015,2405:229-236. WEN Changping. Prediction and hazard classification of bumping geo pressure based on Bayes discriminant analysis method [J]. Journal of Natural Disasters,2015,2405:229-236.
[4] [4] 朱卓慧,赵伏军,叶洲元.基于距离判别分析法的冲击地压预测研究[J].中国安全科学学报,2008,03:41-45+177. ZHU Zhuohui, ZHAO Fujun, YE Zhouyuan. Prediction of rock burst in mining based on distance discriminant analysis method [J]. China Safety Science Journal , 2008, 03: 41-45+177.
[5] [5] 窦林名,何学秋.冲击矿压危险预测的电磁辐射原理[J].地球物理学进展,2005,02:427-431.[2017-09-08]. DOU Linming, HE Xueqiu. Monitoring rock burst by electromagnetic emission [J]. Progress in Geophysics, 2005, 02: 427-431.[2017-09-08].
[6] [6] 陈国祥,窦林名,曹安业,李志华.电磁辐射法评定冲击矿压危险等级及应用[J].煤炭学报,2008,08:866-870.[2017-09-08].DOI:10.13225/j.cnki.jccs.2008.08.007 CHEN Guoxiang, DOU Linming, CAO Anye, LI Zhihua. Assessment of rock burst danger and application on electromagnetice mission method[J] .Journal of China Coal Society ,2008,08:866-870.[2017-09-08]. DOI:10.13225/j.cnki.jccs.2008.08.007
[7] [7] 曹安业,窦林名,秦玉红,李志华.微震监测冲击矿压技术成果及其展望[J].煤矿开采,2007,01:20-23+39.[2017-09-08].DOI:10.13532/j.cnki.cn11-3677/td.2007.01.007 CAO Anye, DOU Linming, QIN Yuhong, LI Zhihua. Technical products of micro-seism monitoring rock-bursting and its prospect[J] .Journal of China Coal Society,2007,01:20-23+39.[2017-09-08].DOI:10.13532/j.cnki.cn11-3677/td.2007.01.007
[8] [8] 邓红卫,陈超群,张亚南.岩体可爆性等级判别的随机森林模型及R实现[J].世界科技研究与发展,2016,3805:946-949. DENG Hongwei, CHEN Chaoqun, ZHANG Yanan. Random forest model of rock mass blastability grading and R language implementation[J]. World Sci-Tech R & D,2016,3805:946-949.
[9] [9] 温廷新,张波,邵良杉.煤与瓦斯突出预测的随机森林模型[J].计算机工程与应用,2014,5010:233-237. WEN Tingxin, ZHANG Bo, SHAO Liangshan. Prediction of coal and gas outburst based on random forest model[J]. Computer Engineering and Applications,2014,5010:233-237.
[10] [10] 王超.基于未确知测度理论的冲击地压危险性综合评价模型及应用研究[D].北京:中国矿业大学,2011. WANG Cao. Research of rock burst risk comprehensive evaluation method based on unascertained measurement model and application[D].Beijing:China Mining University,2011.
[11] [11] 闫河.基于遗传算法和人工神经网络相结合的冲击地压预测的研究[D]. 重庆:重庆大学,2002. YAN He. The r esearch of rock burst prediction basing on genetic algorithm and BP artificial neural network[D]. Chongqing: Chongqing University.
[12] [12] 兰天伟,张宏伟,李胜,宋卫华,韩军,董华东.矿井冲击地压危险性预测的多因素模式识别[J].中国安全科学学报,2013,2303:33-38. LAN Tianwei, ZHANG Hongwei, LI Sheng, SONG Weihua, HAN Jun, DONG Huadong. Multi-factor pattern recognition method for predicting mine rock burst risk[J]. China Safety Science Journal ,2013,2303:33-38.
[13] [13] GB/T25217.1-2010,冲击地压测定、监测与防治方法 第1部分:顶板岩层冲击倾向性分类及指数的测定方法[S]. GB/T25217.1-2010,Methods for measurement,monitoring and prevention of rock burst. Part 1: Determination method for classification of rock tendency and its index of roof strata[S].
[14] [14] GB/T25217.2-2010,冲击地压测定、监测与防治方法 第2部分:煤的冲击倾向性分类及指数的测定方法[S]. GB/T25217.1-2010,Methods for measurement, monitoring and prevention of rock burst. Part 2: Determination method for classification of rock tendency and its index of c oal[S].
[15] [15] 眭彦斌.应用距离判别法预测煤矿冲击地压危险性[J].山西焦煤科技,2011,3504:12-14+31. SUI Yanbin. Prediction of rock burst risk in coal mine by distance discriminant method[J]. Shanxi Coking Coal Science & Technology ,2011,3504:12-14+31.
[16] [16] 薛锦春.矿山边坡岩体非线性力学分析与安全预警系统研究[D].长沙:中南大学,2012. XUE Jinchun. Nonlinear mechanical analysis of rock mass and early warning security system in mine slope[D]. Changsha: Central South University,2012.
[17] [17] 罗战友,杨晓军,龚晓南.基于支持向量机的边坡稳定性预测模型[J].岩石力学与工程学报,2005,01:144-148. LUO Zhanyou,YANG Xiaojun,GONG Xiaonan. Support vector machine model in slope stability evaluation[J]. Chinese Journal of Rock Mechanics and Engineering ,2005,01:144-148.
[18] [18] 代高飞.岩石非线性动力学特征及冲击地压的研究[D].重庆:重庆大学,2002. -
期刊类型引用(5)
1. 李忠勤,刘赵龙. 基于ISABO-SVM的冲击地压危险等级预测. 黑龙江科技大学学报. 2024(04): 611-616 . 百度学术
2. 王崇革,方洲,金云灿,孙悦. 基于融合赋权-云模型的煤矿冲击地压危险性评价. 中国矿业. 2020(06): 97-103 . 百度学术
3. 陆丰荣,曾玉梨,王海兰,李国樑,谢植伟,钟怡洲. 大鼠两代繁殖毒性试验中分组和抽样方法探讨. 中国职业医学. 2019(04): 516-519 . 百度学术
4. 王晨晖,袁颖,周爱红,刘立申,王利兵,陈凯南. 基于粗糙集优化支持向量机的泥石流危险度预测模型. 科学技术与工程. 2019(31): 70-77 . 百度学术
5. 韩超群,陈建宏,周智勇,杨珊. 基于主成分分析—支持向量机模型的矿岩可爆性等级预测研究. 黄金科学技术. 2019(06): 879-887 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 936
- HTML全文浏览量: 191
- PDF下载量: 1288
- 被引次数: 6