ISSN 1003-8035 CN 11-2852/P
  • 中国科技核心期刊
  • CSCD收录期刊
  • Caj-cd规范获奖期刊
  • Scopus 收录期刊
  • DOAJ 收录期刊
  • GeoRef收录期刊
欢迎扫码关注“i环境微平台”

基于SVM的冲击地压分级预测模型及R语言实现

张曼, 陈建宏, 周智勇

张曼, 陈建宏, 周智勇. 基于SVM的冲击地压分级预测模型及R语言实现[J]. 中国地质灾害与防治学报, 2018, 29(4): 64-69. DOI: 10.13225/j.cnki.jccs.2008.08.007
引用本文: 张曼, 陈建宏, 周智勇. 基于SVM的冲击地压分级预测模型及R语言实现[J]. 中国地质灾害与防治学报, 2018, 29(4): 64-69. DOI: 10.13225/j.cnki.jccs.2008.08.007
ZHANGMAN, CHENJIANHONG, ZHOUZhiyong. Grading Prediction Model of Rock Burst Based on SVM and Realization of R Language[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(4): 64-69. DOI: 10.13225/j.cnki.jccs.2008.08.007
Citation: ZHANGMAN, CHENJIANHONG, ZHOUZhiyong. Grading Prediction Model of Rock Burst Based on SVM and Realization of R Language[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(4): 64-69. DOI: 10.13225/j.cnki.jccs.2008.08.007

基于SVM的冲击地压分级预测模型及R语言实现

Grading Prediction Model of Rock Burst Based on SVM and Realization of R Language

  • 摘要: 采场冲击地压的分级预测对保障矿山安全具有重要的意义。在综合考虑采场冲击地压等级判别的各类影响因素之后,引入支持向量机理论,建立了采场冲击地压等级判别的SVM模型。通过借助R语言实现了分层随机抽样的技术,保证了训练集与测试集样本数据的随机性和差异性。研究表明:基于SVM理论的采场冲击地压分级预测模型,可靠性强、预测准确率高。同时,采场冲击地压分级预测模型程序化语言的实现,对保障工程后期的研究预测的可持续性具有重大的意义。
  • [1] [1] 何满潮.深部开采工程岩石力学现状及其展望[A]. 中国岩石力学与工程学会.第八次全国岩石力学与工程学术大会论文集[C].中国岩石力学与工程学会,2004:7.

    HE Manchao. Present situation and prospect of rock mechanics in deep mining engineering[A]. China Society of Rock Mechanics and Engineering. The Proceedings of the 8th National Conference on Rock Mechanics and Engineering[C]. China Society of Rock Mechanics and Engineering, 2004:7.

    [2] [2] 李宝富,刘永磊.冲击地压危险性等级识别的随机森林模型及应用[J].科技导报,2015,3301:57-62.

    LI Baofu, LIU Yonglei. Determination of classification of rock burst risk based on random forest approach and its application[J]. Science & Technology Review ,2015,3301:57-62.

    [3] [3] 文畅平.基于Bayes判别分析法的冲击地压预测与危险性分级[J].自然灾害学报,2015,2405:229-236.

    WEN Changping. Prediction and hazard classification of bumping geo pressure based on Bayes discriminant analysis method [J]. Journal of Natural Disasters,2015,2405:229-236.

    [4] [4] 朱卓慧,赵伏军,叶洲元.基于距离判别分析法的冲击地压预测研究[J].中国安全科学学报,2008,03:41-45+177.

    ZHU Zhuohui, ZHAO Fujun, YE Zhouyuan. Prediction of rock burst in mining based on distance discriminant analysis method [J]. China Safety Science Journal , 2008, 03: 41-45+177.

    [5] [5] 窦林名,何学秋.冲击矿压危险预测的电磁辐射原理[J].地球物理学进展,2005,02:427-431.[2017-09-08].

    DOU Linming, HE Xueqiu. Monitoring rock burst by electromagnetic emission [J]. Progress in Geophysics, 2005, 02: 427-431.[2017-09-08].

    [6] [6] 陈国祥,窦林名,曹安业,李志华.电磁辐射法评定冲击矿压危险等级及应用[J].煤炭学报,2008,08:866-870.[2017-09-08].DOI:10.13225/j.cnki.jccs.2008.08.007

    CHEN Guoxiang, DOU Linming, CAO Anye, LI Zhihua. Assessment of rock burst danger and application on electromagnetice mission method[J] .Journal of China Coal Society ,2008,08:866-870.[2017-09-08]. DOI:10.13225/j.cnki.jccs.2008.08.007

    [7] [7] 曹安业,窦林名,秦玉红,李志华.微震监测冲击矿压技术成果及其展望[J].煤矿开采,2007,01:20-23+39.[2017-09-08].DOI:10.13532/j.cnki.cn11-3677/td.2007.01.007

    CAO Anye, DOU Linming, QIN Yuhong, LI Zhihua. Technical products of micro-seism monitoring rock-bursting and its prospect[J] .Journal of China Coal Society,2007,01:20-23+39.[2017-09-08].DOI:10.13532/j.cnki.cn11-3677/td.2007.01.007

    [8] [8] 邓红卫,陈超群,张亚南.岩体可爆性等级判别的随机森林模型及R实现[J].世界科技研究与发展,2016,3805:946-949.

    DENG Hongwei, CHEN Chaoqun, ZHANG Yanan. Random forest model of rock mass blastability grading and R language implementation[J]. World Sci-Tech R & D,2016,3805:946-949.

    [9] [9] 温廷新,张波,邵良杉.煤与瓦斯突出预测的随机森林模型[J].计算机工程与应用,2014,5010:233-237.

    WEN Tingxin, ZHANG Bo, SHAO Liangshan. Prediction of coal and gas outburst based on random forest model[J]. Computer Engineering and Applications,2014,5010:233-237.

    [10] [10] 王超.基于未确知测度理论的冲击地压危险性综合评价模型及应用研究[D].北京:中国矿业大学,2011.

    WANG Cao. Research of rock burst risk comprehensive evaluation method based on unascertained measurement model and application[D].Beijing:China Mining University,2011.

    [11] [11] 闫河.基于遗传算法和人工神经网络相结合的冲击地压预测的研究[D]. 重庆:重庆大学,2002.

    YAN He. The r esearch of rock burst prediction basing on genetic algorithm and BP artificial neural network[D]. Chongqing: Chongqing University.

    [12] [12] 兰天伟,张宏伟,李胜,宋卫华,韩军,董华东.矿井冲击地压危险性预测的多因素模式识别[J].中国安全科学学报,2013,2303:33-38.

    LAN Tianwei, ZHANG Hongwei, LI Sheng, SONG Weihua, HAN Jun, DONG Huadong. Multi-factor pattern recognition method for predicting mine rock burst risk[J]. China Safety Science Journal ,2013,2303:33-38.

    [13] [13] GB/T25217.1-2010,冲击地压测定、监测与防治方法 第1部分:顶板岩层冲击倾向性分类及指数的测定方法[S].

    GB/T25217.1-2010,Methods for measurement,monitoring and prevention of rock burst. Part 1: Determination method for classification of rock tendency and its index of roof strata[S].

    [14] [14] GB/T25217.2-2010,冲击地压测定、监测与防治方法 第2部分:煤的冲击倾向性分类及指数的测定方法[S].

    GB/T25217.1-2010,Methods for measurement, monitoring and prevention of rock burst. Part 2: Determination method for classification of rock tendency and its index of c oal[S].

    [15] [15] 眭彦斌.应用距离判别法预测煤矿冲击地压危险性[J].山西焦煤科技,2011,3504:12-14+31.

    SUI Yanbin. Prediction of rock burst risk in coal mine by distance discriminant method[J]. Shanxi Coking Coal Science & Technology ,2011,3504:12-14+31.

    [16] [16] 薛锦春.矿山边坡岩体非线性力学分析与安全预警系统研究[D].长沙:中南大学,2012.

    XUE Jinchun. Nonlinear mechanical analysis of rock mass and early warning security system in mine slope[D]. Changsha: Central South University,2012.

    [17] [17] 罗战友,杨晓军,龚晓南.基于支持向量机的边坡稳定性预测模型[J].岩石力学与工程学报,2005,01:144-148.

    LUO Zhanyou,YANG Xiaojun,GONG Xiaonan. Support vector machine model in slope stability evaluation[J]. Chinese Journal of Rock Mechanics and Engineering ,2005,01:144-148.

    [18] [18] 代高飞.岩石非线性动力学特征及冲击地压的研究[D].重庆:重庆大学,2002.
  • 期刊类型引用(5)

    1. 李忠勤,刘赵龙. 基于ISABO-SVM的冲击地压危险等级预测. 黑龙江科技大学学报. 2024(04): 611-616 . 百度学术
    2. 王崇革,方洲,金云灿,孙悦. 基于融合赋权-云模型的煤矿冲击地压危险性评价. 中国矿业. 2020(06): 97-103 . 百度学术
    3. 陆丰荣,曾玉梨,王海兰,李国樑,谢植伟,钟怡洲. 大鼠两代繁殖毒性试验中分组和抽样方法探讨. 中国职业医学. 2019(04): 516-519 . 百度学术
    4. 王晨晖,袁颖,周爱红,刘立申,王利兵,陈凯南. 基于粗糙集优化支持向量机的泥石流危险度预测模型. 科学技术与工程. 2019(31): 70-77 . 百度学术
    5. 韩超群,陈建宏,周智勇,杨珊. 基于主成分分析—支持向量机模型的矿岩可爆性等级预测研究. 黄金科学技术. 2019(06): 879-887 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  936
  • HTML全文浏览量:  191
  • PDF下载量:  1288
  • 被引次数: 6
出版历程
  • 刊出日期:  2018-08-24

目录

    /

    返回文章
    返回